“Number Rules the Universe”
Number Theory through the Ages

David Murphy

Faculty Colloquium Luncheon
Hillsdale College

November 17, 2010
Pythagoras and his theorem

Pythagoras (569–500 BC) was born on the island of Samos in Greece. He founded the Brotherhood of Pythagoreans, a group devoted to mathematics, who believed

“Number rules the universe.”
Pythagoras and his theorem

Pythagoras (569–500 BC) was born on the island of Samos in Greece. He founded the Brotherhood of Pythagoreans, a group devoted to mathematics, who believed

“Number rules the universe.”

Number theory begins with the Pythagoreans.
Pythagoras (569–500 BC) was born on the island of Samos in Greece. He founded the Brotherhood of Pythagoreans, a group devoted to mathematics, who believed

“Number rules the universe.”

Number theory begins with the Pythagoreans.

The Pythagorean Theorem

If \(\triangle ABC \) is a right triangle whose legs have lengths \(a \) and \(b \) and whose hypotenuse has length \(c \), then

\[
a^2 + b^2 = c^2.
\]

This is often called the Pythagorean equation.
A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.
A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Examples:

1. $a = 3$, $b = 4$ and $c = 5$ because $3^2 + 4^2 = 5^2$
Pythagorean triples

A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Examples:

1. $a = 3$, $b = 4$ and $c = 5$ because $3^2 + 4^2 = 5^2$
2. $a = 5$, $b = 12$ and $c = 13$ because $5^2 + 12^2 = 13^2$
A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Examples:

1. $a = 3$, $b = 4$ and $c = 5$ because $3^2 + 4^2 = 5^2$
2. $a = 5$, $b = 12$ and $c = 13$ because $5^2 + 12^2 = 13^2$
3. $a = 7$, $b = 24$ and $c = 25$ because $7^2 + 24^2 = 25^2$
Pythagorean triples

A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Examples:

1. $a = 3$, $b = 4$ and $c = 5$ because $3^2 + 4^2 = 5^2$
2. $a = 5$, $b = 12$ and $c = 13$ because $5^2 + 12^2 = 13^2$
3. $a = 7$, $b = 24$ and $c = 25$ because $7^2 + 24^2 = 25^2$
4. $a = 8$, $b = 15$ and $c = 17$ because $8^2 + 15^2 = 17^2$
A Pythagorean triple consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Plimpton 322
Babylonian tablet
c. 1800 BC
A **Pythagorean triple** consists of whole numbers a, b and c that satisfy the Pythagorean equation.

Examples:

1. $a = 3$, $b = 4$ and $c = 5$ because $3^2 + 4^2 = 5^2$
2. $a = 5$, $b = 12$ and $c = 13$ because $5^2 + 12^2 = 13^2$
3. $a = 7$, $b = 24$ and $c = 25$ because $7^2 + 24^2 = 25^2$
4. $a = 8$, $b = 15$ and $c = 17$ because $8^2 + 15^2 = 17^2$
5. Plimpton 322 (a Babylonian tablet, c. 1800 BC)
 - Row 1: $a = 120$, $b = 119$ and $c = 169$
 - Row 3: $a = 4800$, $b = 4601$ and $c = 6649$
 - Row 4: $a = 13500$, $b = 12709$ and $c = 18541$
Pythagorean triples

Pythagoras’ parametrization of Pythagorean triples:

\[n^2 + \left(\frac{n^2 - 1}{2} \right)^2 = \left(\frac{n^2 + 1}{2} \right)^2 \]

where \(n \) is any odd number.
Pythagorean triples

Pythagoras’ parametrization of Pythagorean triples:

\[n^2 + \left(\frac{n^2 - 1}{2} \right)^2 = \left(\frac{n^2 + 1}{2} \right)^2 \]

where \(n \) is any odd number.
Pythagorean triples

Plato’s parametrization of Pythagorean triples:

\[(2n)^2 + (n^2 - 1)^2 = (n^2 + 1)^2\]

where \(n\) is any number.
Pythagorean triples

Plato’s parametrization of Pythagorean triples:

$$(2n)^2 + (n^2 - 1)^2 = (n^2 + 1)^2$$

where n is any number.

Euclid’s parametrization of Pythagorean triples (Euclid X.29):

$$(pq)^2 + \left(\frac{p^2 - q^2}{2}\right)^2 = \left(\frac{p^2 + q^2}{2}\right)^2$$

where p, q are two numbers of the same parity and $p > q$.
Pierre de Fermat (1601–1665)

“It is impossible for a cube to be the sum of two cubes, a fourth power to be the sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly marvelous demonstration of this proposition that this margin is too narrow to contain.”

— Fermat, c. 1630
"It is impossible for a cube to be the sum of two cubes, a fourth power to be the sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly marvelous demonstration of this proposition that this margin is too narrow to contain."

— Fermat, c. 1630

Fermat's Last Theorem

The equation

\[x^n + y^n = z^n \]

has no solutions in positive whole numbers whenever \(n \geq 3 \).
The end of a 350-year-old problem

To ensure (1) holds we use Hilbert irreducibility:

\[\exists f, \text{ a finite collection of irreducible polynomials}, f_i(x, t) \in \mathbb{Q}(t)[x] \]

Each \(f_i \) for each one.

Pick a \(p \not\equiv 5 \pmod{4} \) has no root mod \(p \).

Then pick a non-constant \(\eta \in \mathbb{Q} \) which is \(p \)-adically close to the original \(E_\eta \)

So \(t \rightarrow E' \)

\[E_{\eta} \rightarrow E' \]

By then
Leonhard Euler (1707–1783)

“It has seemed to many Geometers that this theorem [Fermat’s Last ‘Theorem’] may be generalized. Just as there do not exist two cubes whose sum or difference is a cube, it is certain that it is impossible to exhibit three biquadrates whose sum is a biquadrate, but that at least four biquadrates are needed if their sum is to be a biquadrate, although no one has been able up to the present to assign four such biquadrates. In the same manner it would seem impossible to exhibit four fifth powers whose sum is a fifth power, and similarly for higher powers.” — Euler, 1769
My work with Hillsdale senior Jonathan Gregg

Last spring I began work with Jon Gregg on a problem closely related to Euler’s Conjecture. Supported by a LAUREATES fellowship, we explored when equations of the form

\[x_1^n + x_2^n + \cdots + x_k^n = y^n \]

have solutions in positive whole numbers.
Solutions to $x^3 + y^3 + z^3 = t^3$

By an iterative process, we found several primitive solutions to the equation

$$x^3 + y^3 + z^3 = t^3.$$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>-2</td>
<td>9</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>-2</td>
<td>15</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>1354</td>
<td>1389</td>
<td>9507</td>
<td>9526</td>
</tr>
<tr>
<td>22,686,834</td>
<td>24,248,639</td>
<td>162,904,689</td>
<td>163,229,798</td>
</tr>
</tbody>
</table>
Parametric Solutions to Other Equations

We found a two-parameter solution

$$(6a^3 + b^3)^3 = (6a^3 - b^3)^3 + 2(b^3)^3 + (6a^2 b)^3$$

and a three-parameter solution

$$(9a^3 + b^3 + c^3)^3 = (9a^3 + b^3 - c^3)^3 + (9a^3 - b^3 + c^3)^3 + (-9a^3 + b^3 + c^3)^3 + (6abc)^3$$

to the equation $x^3 + y^3 + z^3 + w^3 = t^3$.
Parametric Solutions to Other Equations

We found a two-parameter solution

\[(6a^3 + b^3)^3 = (6a^3 - b^3)^3 + 2(b^3)^3 + (6a^2 b)^3\]

and a three-parameter solution

\[(9a^3 + b^3 + c^3)^3 = (9a^3 + b^3 - c^3)^3 + (9a^3 - b^3 + c^3)^3 + (-9a^3 + b^3 + c^3)^3 + (6abc)^3\]

to the equation \(x^3 + y^3 + z^3 + w^3 = t^3\).

We also found a four-parameter solution to the equation

\[x_1^8 + x_2^8 + \cdots + x_8^8 = y_1^8 + y_2^8 + \cdots + y_9^8,\]

but this slide is not large enough to contain it.
The Pythagorean Theorem
Proofs of the Pythagorean Theorem

Behold!

\[
\begin{align*}
\text{Left:} & & \text{Right:} \\
& a & & a \\
& b & & b \\
& a & & a \\
& b & & b
\end{align*}
\]

\[
\text{Left:} & & \text{Right:} \\
& a + b & & a + b
\]
Elliptic Curves