1. (20 points) Consider the function

\[f(x, y) = 2xy - 3y^2 \]

near the point \(P(5, 5) \).

(a) Find the rate of change of \(f(x, y) \) at \(P \) in the direction of the vector \(\mathbf{v} = \langle 4, 3 \rangle \).

\textbf{Solution:} The rates of change of \(f \) at \(P \) are measured by the directional derivatives, \(D_{\mathbf{u}} f(P) \). Now \(D_{\mathbf{u}} f(P) = \nabla f(P) \cdot \mathbf{u} \), where

\[\nabla f(P) = \langle f_x(P), f_y(P) \rangle = \langle 2y|_{(5,5)}, 2x - 6y|_{(5,5)} \rangle = \langle 10, -20 \rangle. \]

Now, we need to find the unit vector \(\mathbf{u} \) in the direction of \(\mathbf{v} = \langle 4, 3 \rangle \), which is

\[\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 4, 3 \rangle}{\sqrt{4^2 + 3^2}} = \langle \frac{4}{5}, \frac{3}{5} \rangle. \]

Thus, the rate of change of \(f(x, y) \) at \(P \) in the specified direction is

\[D_{\mathbf{u}} f(P) = \nabla f(P) \cdot \mathbf{u} = \langle 10, -20 \rangle \cdot \langle \frac{4}{5}, \frac{3}{5} \rangle = (10)(4/5) + (-20)(3/5) = 8 - 12 = -4. \]

(b) In which direction does the function \(f(x, y) \) increase most rapidly at \(P \)?

\textbf{Solution:} The directional derivative of \(f \) at \(P \) will be largest when \(\nabla f(P) \) and \(\mathbf{u} \) point in the same direction, since \(D_{\mathbf{u}} f(P) = \nabla f(P) \cdot \mathbf{u} = |\nabla f(P)||\mathbf{u}| \cos \theta = |\nabla f(P)| \cos \theta \), where \(\theta \) is the angle between \(\nabla f(P) \) and \(\mathbf{u} \). Now \(\nabla f(P) = \langle 10, -20 \rangle \), so we want \(\mathbf{u} \) to be the unit vector in this direction, i.e.,

\[\mathbf{u} = \langle \frac{10}{\sqrt{10^2 + (-20)^2}}, \frac{-20}{\sqrt{10^2 + (-20)^2}} \rangle = \langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \rangle. \]

(c) Is there a direction \(\mathbf{u} \) in which the rate of change of \(f(x, y) \) at \(P \) equals -25? Give reasons for your answer.

\textbf{Solution:} We know that \(-|\nabla f(P)| \leq D_{\mathbf{u}} f(P) \leq |\nabla f(P)| \) for all directions \(\mathbf{u} \), so let’s compute

\[|\nabla f(P)| = |\langle 10, -20 \rangle| = \sqrt{10^2 + (-20)^2} = 10\sqrt{5} \approx 22.36. \]

Thus, it is impossible to find a direction in which the rate of change of \(f(x, y) \) at \(P \) is equal to -25 since \(-25 < -|\nabla f(P)| \approx -22.36 \).

2. (30 points) Consider the surfaces \(S_1 \) and \(S_2 \), given by the equations

\[S_1 : x^3 + 3x^2y^2 + y^3 + 4xy - z^2 = 0 \quad \text{and} \quad S_2 : x^2 + y^2 + z^2 = 11, \]

and the point \(P(1, 1, 3) \), which is on both surfaces.

(a) Find the equation of the tangent plane to \(S_1 \) at \(P \).

\textbf{Solution:} To know the equation of the tangent plane to \(S_1 \) at \(P \), we need a point (i.e., \(P \) itself) and a vector perpendicular to \(S_1 \) at \(P \). Here’s where the gradient comes in, as \(\nabla f \)
is perpendicular to the level surface of the function \(f(x, y, z) = x^3 + 3x^2y^2 + y^3 + 4xy - z^2 \) (for \(S_1 \) is given by \(f(x, y, z) = 0 \)). Now we calculate

\[
\nabla f = \langle 3x^2 + 6xy^2 + 4y, 6x^2y + 3y^2 + 4x, -2z \rangle
\]

so

\[
\]

Hence the equation for the tangent plane, \(T_1 \), to \(S_1 \) at \(P \) is

\[
[13](x - 1) + [13](y - 1) + [-6](z - 3) = 0 \quad \text{or} \quad 13x + 13y - 6z = 8.
\]

(b) Find the equation of the tangent plane to \(S_2 \) at \(P \).

Solution: As above, the equation for the tangent plane to \(S_2 \) at \(P \) requires a point (i.e., \(P \) itself) and a vector perpendicular to \(S_2 \) at \(P \). Here's where the gradient comes in, as \(\nabla g \) is perpendicular to the level surface of the function \(g(x, y, z) = x^2 + y^2 + z^2 \) (for \(S_2 \) is given by \(g(x, y, z) = 11 \)). Now we calculate

\[
\nabla g = \langle 2x, 2y, 2z \rangle \quad \text{so} \quad \nabla g(P) = \langle 2[1], 2[1], 2[3] \rangle = \langle 2, 2, 6 \rangle.
\]

Hence the equation for the tangent plane, \(T_2 \), to \(S_2 \) at \(P \) is

\[
[2](x - 1) + [2](y - 1) + [6](z - 3) = 0 \quad \text{or} \quad x + y + 3z = 11.
\]

(c) Find the *parametric equations* for the line of intersection of the tangent planes in parts (a) and (b).

Solution: To find the line tangent to the curve of intersection of \(S_1 \) and \(S_2 \) at \(P \), which must then be tangent to \(S_1 \) at \(P \) as well as to \(S_2 \) at \(P \), we can quickly see that what we really are after is the line of intersection of the two planes from parts (b) and (c) above. So we need a direction for this line and a point on it. By definition, essentially, \(P \) is that point, and the direction will have to be a direction that is both in \(T_1 \) and in \(T_2 \), so it is perpendicular to both the normal vector \(\mathbf{n}_1 = \langle 13, 13, -6 \rangle \) to \(T_1 \) and to the normal vector \(\mathbf{n}_2 = \langle 2, 2, 6 \rangle \) to \(T_2 \). We find such a vector using the *cross product*,

\[
\mathbf{n}_1 \times \mathbf{n}_2 = \langle 13, 13, -6 \rangle \times \langle 2, 2, 6 \rangle = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
13 & 13 & -6 \\
2 & 2 & 6 \\
\end{vmatrix} = \langle 90, -90, 0 \rangle.
\]

Thus, the parametric equations for the line tangent to both surfaces \(S_1 \) and \(S_2 \) at the point \(P \) are

\[
x = 1 + 90t, \quad y = 1 - 90t, \quad z = 3.
\]

[**Note:** This is the line tangent to the curve of intersection of the surfaces, \(S_1 \) and \(S_2 \), at the point \(P \).]

3. (10 points) Find the limit of \(f \) as \((x, y) \to (0, 0) \) or show that the limit does not exist:

\[
f(x, y) = \frac{y^2}{x^2 + y^2}
\]
Solution: Let’s rewrite the function using polar coordinates, \(r \) and \(\theta \), and recognize that this limit will correspond to letting \(r \to 0 \). Now
\[
\frac{y^2}{x^2 + y^2} = \frac{(r \sin \theta)^2}{r^2} = \frac{r^2 \sin^2 \theta}{r^2} = \sin^2 \theta,
\]
which clearly depends on the value of \(\theta \), even as \(r \to 0 \). So the limit does not exist.

We can also show this by comparing the value of the limit along two different lines, \(y = m_1 x \) and \(y = m_2 x \) for different slopes, \(m_1 \) and \(m_2 \). For efficiency, let’s consider all lines \(y = mx \), so \((x, y) \to (0, 0)\) along \(y = mx \) is accomplished by letting \(x \to 0 \) and evaluating
\[
\lim_{x \to 0} \frac{(mx)^2}{x^2 + (mx)^2} = \lim_{x \to 0} \frac{m^2 x^2}{x^2(1 + m^2)} = \lim_{x \to 0} \frac{m^2}{1 + m^2} = \frac{m^2}{1 + m^2}.
\]
So, if \(m_1 = 0 \) and we let \((x, y) \to (0, 0)\) along the line \(y = 0 \), the projected limit is \(\frac{(0)^2}{1 + (0)^2} = 0 \). However, when \(m_2 = 1 \) and \((x, y) \to (0, 0)\) along the line \(y = x \), we find that the projected value of the limit is \(\frac{(1)^2}{1 + (1)^2} = \frac{1}{2} \). Since these differ, we conclude that the limit does not exist.

4. (25 points) Find all the local maximum, local minimum, and saddle points of the function
\[
f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy.
\]

Solution: We begin by finding the partial derivatives of \(f \):
\[
f_x(x, y) = 12x - 6x^2 + 6y \quad \text{and} \quad f_y(x, y) = 6y + 6x.
\]
Setting \(f_y = 0 \), we find that \(6y = -6x \), which we can now plug in to the equation \(f_x = 0 \) to get
\[
12x - 6x^2 + [-6x] = 6x - 6x^2 = 6x(1 - x) = 0
\]
so \(x = 0 \) or \(x = 1 \). When \(x = 0 \), the equation \(6y = -6x \) tells us \(y = 0 \) as well so we find the critical point \((0, 0)\) of \(f \). When \(x = 1 \), \(6y = -6x \) implies that \(y = -1 \) and \((1, -1)\) is another critical point of \(f \).

To test these points, we compute the second order partial derivatives,
\[
f_{xx}(x, y) = 12 - 12x, \quad \text{and} \quad f_{xy}(x, y) = 6 = f_{yx}(x, y), \quad f_{yy}(x, y) = 6.
\]
Therefore, the discriminant is
\[
D_f(x, y) = [f_{xx}][f_{yy}] - [f_{xy}]^2 = [12 - 12x][6] - [6]^2 = 72 - 72x - 36 = 36 - 72x.
\]

We use this to test our first critical point:
\[
D_f(0, 0) = 36 - 72[0] = 36 > 0 \quad \text{and} \quad f_{xx}(0, 0) = 12 - 12[0] = 12 > 0
\]
implies
\[
f(0, 0) = 0 \text{ is a local minimum value of } f.
\]
Now, checking our other critical point, we find:
\[
D_f(1, -1) = 36 - 72[1] = -36 < 0
\]
implies
\[
f(1, -1) = 1 \text{ is a saddle point of } f.
\]
5. (40 points) Consider the function
\[f(x, y) = 2x^2 - 4x + y^2 - 4y + 1 \]
on the closed triangular region \(R \) bounded by the lines \(x = 0, \ y = 3 \) and \(y = x \).

(a) Find the absolute maximum and minimum values of \(f(x, y) \) on \(R \).

Solution: Let’s begin by drawing the region \(R \) described in the problem.

So our strategy will be to first locate local extrema, then to test each of the three boundary lines using Calculus I techniques.

First, let’s identify the critical points of \(f \). So we compute

\[f_x(x, y) = 4x - 4 \quad \text{and} \quad f_y(x, y) = 2y - 4. \]

Now \(f_x(x, y) = 4x - 4 = 0 \) only when \(x = 1 \), and \(f_y(x, y) = 2y - 4 = 0 \) only when \(y = 2 \), so \((1, 2)\) is the only critical point of the function \(f \). Since we’re looking for *absolute extrema*, we don’t need to employ any Second Derivative Tests, but content ourselves to evaluate

With the local extrema now determined, we restrict our attention to the boundaries. So consider

\[f(0, y) = y^2 - 4y + 1 \implies f'(0, y) = 2y - 4 = 0 \quad \text{when} \quad y = 2. \]

So, on the boundary \(x = 0 \), the “critical point” is at \((0, 2)\), so we record the value of at this point and the endpoints of this edge:

\[f(0, 0) = 1 \quad \text{and} \quad f(0, 2) = -3 \quad \text{and} \quad f(0, 3) = -2. \]

Next, along the edge \(y = 3 \) we have

\[f(x, 3) = 2x^2 - 4x - 2 \implies f'(x, 3) = 4x - 4 = 0 \quad \text{when} \quad x = 1. \]

Hence, when \(y = 3 \), the “critical point” is at \((1, 3)\), so we record the values

\[f(0, 3) = -2 \quad \text{and} \quad f(1, 3) = -4 \quad \text{and} \quad f(3, 3) = 4. \]

Finally, on the edge \(y = x \), we have

\[f(x, x) = 2x^2 - 4x + [x]^2 - 4[x] + 1 = 3x^2 - 8x + 1 \implies f'(x, x) = 6x - 8 = 0 \quad \text{when} \quad x = 4/3. \]
So, on $y = x$, the only “critical point” is at $(4/3, 4/3)$, so we record

$$f(0, 0) = 1 \quad \text{and} \quad f(4/3, 4/3) = -\frac{13}{3} \quad \text{and} \quad f(3, 3) = 4.$$

Therefore, the absolute maximum value of $f(x, y)$ is $f(3, 3) = 4$ and the absolute minimum value of $f(x, y)$ is $f(1, 2) = -5$.

(b) Find the average value of $f(x, y)$ on \mathcal{R}.

Solution: The average value of $f(x, y)$ is

$$f_{\text{ave}} = \frac{1}{\text{Area}(\mathcal{R})} \iint_{\mathcal{R}} f(x, y) \, dA.$$

While we could computer $\text{Area}(\mathcal{R})$ as a double integral, it is clearly going to be easier to find this area by observing that \mathcal{R} is a triangle of base $b = 3$ and height $h = 3$, so its area is

$$\text{Area}(\mathcal{R}) = \frac{1}{2}bh = \frac{1}{2}(3)(3) = \frac{9}{2}.$$

Therefore, the average value of $f(x, y)$ on the region \mathcal{R} is

$$f_{\text{ave}} = \frac{1}{\text{Area}(\mathcal{R})} \iint_{\mathcal{R}} f(x, y) \, dA = \frac{1}{\frac{9}{2}} \iint_{\mathcal{R}} f(x, y) \, dA = \frac{2}{9} \iint_{\mathcal{R}} [2x^2 - 4x + y^2 - 4y + 1] \, dA$$

$$= \frac{2}{9} \int_{y=0}^{3} \int_{x=0}^{y} [2x^2 - 4x + y^2 - 4y + 1] \, dx \, dy$$

$$= \frac{2}{9} \int_{y=0}^{3} \left[\frac{2x^3}{3} - 2x^2 + xy^2 - 4xy + x \right]_{x=0}^{y} \, dy$$

$$= \frac{2}{9} \int_{y=0}^{3} \left[\frac{2}{3}y^3 - 2y^2 + y^3 - 4y^2 + y \right] - (0) \, dy$$

$$= \frac{2}{9} \int_{y=0}^{3} \left[\frac{2}{3}y^3 - 2y^2 + y^3 - 4y^2 + y \right] \, dy$$

$$= \frac{2}{9} \left[\frac{2}{3} \cdot \frac{3}{4}y^4 - \frac{2}{3} \cdot \frac{3}{4}y^3 + \frac{3}{4}y^4 - 4 \cdot \frac{3}{4}y^3 + \frac{3}{2}y^2 \right]_{y=0}$$

$$= \frac{2}{9} \left[\left(\frac{81}{6} - \frac{54}{3} + \frac{81}{4} - \frac{108}{3} + \frac{9}{2} \right) - (0) \right]$$

$$= \frac{2}{9} \left[\left(\frac{81}{6} - \frac{54}{3} + \frac{81}{4} - \frac{108}{3} + \frac{9}{2} \right) - (0) \right]$$

$$= \frac{2}{9} \left[\frac{-189}{12} \right] = -\frac{21}{6} = -\frac{7}{2}.$$

6. (25 points) **Improper Double Integrals.** Consider the integral

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(1 + x^2 + y^2)^2} \, dx \, dy.$$

(a) First, sketch the region over which the integral is being taken.
While I can’t (and don’t expect you to do so, either) draw the entire first quadrant, that is the region over which the integral is being taken and which, I hope, you understand the illustration above to indicate.

(b) Next, change the integral into an equivalent integral using polar coordinates, \(r \) and \(\theta \).

Solution: Recall, first, that \(r^2 = x^2 + y^2 \) and that \(dx
dy = dA = r
dr
d\theta \). Next, the polar coordinates of points in the first quadrant are of the form \((r, \theta)\) with \(0 \leq r < \infty \) and \(0 \leq \theta \leq \frac{\pi}{2} \), so the integral we are given is equivalent to the following polar integral:

\[
\int_{y=0}^{\infty} \int_{x=0}^{\infty} \frac{1}{(1 + x^2 + y^2)^2} \; dx \; dy = \int_{\theta=0}^{\pi/2} \int_{r=0}^{\infty} \frac{1}{(1 + r^2)^2} \; r \; dr \; d\theta.
\]

(c) Finally, evaluate the polar integral in part (b).

Solution: Starting where we left off in part (b), we have

\[
\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(1 + x^2 + y^2)^2} \; dx \; dy = \int_{\theta=0}^{\pi/2} \int_{r=0}^{\infty} \frac{1}{(1 + r^2)^2} \; r \; dr \; d\theta
\]

\[
= \int_{\theta=0}^{\pi/2} \left[\lim_{b \to \infty} \int_{r=0}^{b} \frac{r}{(1 + r^2)^2} \; dr \right] \; d\theta
\]

\[
= \int_{\theta=0}^{\pi/2} \left[\lim_{b \to \infty} \frac{1}{2} (1 + r^2)^{-1} \right]_{r=0}^{b} \; d\theta
\]

\[
= \int_{\theta=0}^{\pi/2} \left[\lim_{b \to \infty} \left(\frac{-1}{2(1+b^2)} - \frac{-1}{2(1+0^2)} \right) \right] \; d\theta
\]

\[
= \int_{\theta=0}^{\pi/2} \left[\frac{1}{2} \right] \; d\theta
\]

\[
= \left[\frac{1}{2} \theta \right]_{\theta=0}^{\pi/2}
\]

\[
= \frac{\pi}{4}.
\]